Collaborative Filtering Approach: A Review of Recent Research

Collaborative filtering is one of the basic approaches in recommender systems, which aims to produce to a target user good and reliable recommendation based on the near users to him. This paper offers a detailed study of the collaborative filtering systems based on eighty-three papers that have published in the last 10 years, between 2009 and 2019, starting with a general presentation of challenges and limitations which face this technique, like, cold start, data sparsity, scalability and gray sheep issues. Then, we present the evolution of this approach by year, then the classification of published papers by the application domain and by techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 192.59 Price includes VAT (France)

Softcover Book EUR 242.64 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Collaborative Filtering Recommendation Systems Algorithms, Strengths and Open Issues

Chapter © 2020

Recommendation system techniques and related issues: a survey

Article 07 April 2018

Collaborative Filtering-Based Recommender System

Chapter © 2018

References

  1. Mlungisi, D., Bhekisipho, T.: Sparseness reduction in collaborative filtering using a nearest neighbour artificial immune system with genetic algorithms. Expert Syst. Appl. 132, 110–125 (2019). https://doi.org/10.1016/j.eswa.2019.04.034ArticleGoogle Scholar
  2. Najmani, K., Benlahmar, E., Sael, N., Zellou, A.: A comparative study on recommender systems approaches. In: BDIoT'19: Proceedings of the 4th International Conference on Big Data and Internet of Things. Rabat, Morocco (2019). https://doi.org/10.1145/3372938.3372941
  3. Wang, X., Wang, R., Li, D., Adu-Gyamfi, D., Zhu, Y.: QCF: quantum collaborative filtering recommendation algorithm. Int. J. Theor. Phys. 58(7), 2235–2243 (2019). https://doi.org/10.1007/s10773-019-04114-7ArticleMathSciNetMATHGoogle Scholar
  4. Farhin, M., Vibha, P., Mihir, P.: A review on recommender systems. In: International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, pp 1–6 (2017) https://doi.org/10.1109/ICIIECS.2017.8276182
  5. Lee, S.: Improving jaccard index for measuring similarity in collaborative filtering. In: Kim, K., Joukov, N. (eds.) ICISA 2017. LNEE, vol. 424, pp. 799–806. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4154-9_93ChapterGoogle Scholar
  6. Wang, Q., Cao, W., Liu, Y.: A novel clustering based collaborative filtering recommendation system algorithm. In: Huang, Y.-M., Chao, H.-C., Deng, D.-J., Park, J.J.H. (eds.) Advanced Technologies, Embedded and Multimedia for Human-centric Computing. LNEE, vol. 260, pp. 673–680. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7262-5_77ChapterGoogle Scholar
  7. Kumar, A., Sharma, A.: Alleviating sparsity and scalability issues in collaborative filtering based recommender systems. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). AISC, vol. 199, pp. 103–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35314-7_13ChapterGoogle Scholar
  8. Polezhaeva, E.: Ordinal incremental data in collaborative filtering. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds.) PerMIn 2012. LNCS, vol. 7143, pp. 314–320. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27387-2_39ChapterGoogle Scholar
  9. Li, J., Sun, L., Wang, J.: A slope one collaborative filtering recommendation algorithm using uncertain neighbors optimizing. In: Wang, L., Jiang, J., Lu, J., Hong, L., Liu, B. (eds.) WAIM 2011. LNCS, vol. 7142, pp. 160–166. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28635-3_15ChapterGoogle Scholar
  10. Ozbal, G., Karaman, H., Alpaslan, F.N.: A content-boosted collaborative filtering approach for movie recommendation based on local and global similarity and missing data prediction. Comput. J. 54(9), 1535–1546 (2011). https://doi.org/10.1093/comjnl/bxr001ArticleMATHGoogle Scholar
  11. Zarzour, H., Al-Sharif, Z., Al-Ayyoub, M., Jararweh, Y.: A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques. In: 9th International Conference on Information and Communication Systems (ICICS), pp. 3–5, Irbid, Jordan (2018). https://doi.org/10.1109/IACS.2018.8355449
  12. Wang, X., Xu, Z., Xia, X., Mao, C.: Computing user similarity by combining SimRank++ and cosine similarities to improve collaborative filtering. In: the 14th Web Information Systems and Applications Conference (WISA), Liuzhou, China (2017). https://doi.org/10.1109/WISA.2017.22
  13. Roy, A., Banerjee, S., Sarkar, M., Darwish, A., Elhoseny, M., Ella Hassanien, A.: Exploring new vista of intelligent collaborative filtering: a restaurant recommendation paradigm. J. Comput. Sci. 27, 168–182 (2017). https://doi.org/10.1016/j.jocs.2018.05.012ArticleGoogle Scholar
  14. Li, Z., Huang, L., Zhang, Y.: A collaborative filtering algorithm of calculating similarity based on item rating and attributes. In: The 14th Web Information Systems and Applications Conference (WISA), Liuzhou, China (2017). https://doi.org/10.1109/WISA.2017.35
  15. Qu, Z., Yao, J., Wang, X., Yin, S.: Attribute weighting and samples sampling for collaborative filtering. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China (2018). https://doi.org/10.1109/BigComp.2018.00042
  16. Liu, Y., Wang, S., Shahrukh Khan, M., He, J.: A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering. In: Big Data Mining and Analytics, Vol. 1, Issue 3, pp. 211–221 (2018). https://doi.org/10.26599/BDMA.2018.9020019
  17. Valcarce, D., Parapar, J., Barreiro, Á.: Finding and analysing good neighbourhoods to improve collaborative filtering. Knowl.-Based Syst. 159, 193–202 (2018). https://doi.org/10.1016/j.knosys.2018.06.030ArticleGoogle Scholar
  18. Kumar, T.S., Pandey, S.: Customization of recommendation system using collaborative filtering algorithm on cloud using mahout. In: Buyya, R., Thampi, S.M. (eds.) Intelligent Distributed Computing. AISC, vol. 321, pp. 1–10. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11227-5_1ChapterGoogle Scholar
  19. Li, N., Li, C.: Accumulative influence weight collaborative filtering recommendation approach. In: Chien, B.-C., Hong, T.-P. (eds.) Opportunities and Challenges for Next-Generation Applied Intelligence, pp. 73–78. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92814-0_12ChapterGoogle Scholar
  20. Bharti, R., Gupta, D.: Recommending top N movies using content-based filtering and collaborative filtering with hadoop and hive framework. In: Kalita, J., Balas, V.E., Borah, S., Pradhan, R. (eds.) Recent Developments in Machine Learning and Data Analytics. AISC, vol. 740, pp. 109–118. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1280-9_10ChapterGoogle Scholar
  21. Ge, F.: A user-based collaborative filtering recommendation algorithm based on folksonomy smoothing. In: Zhou, M., Tan, H. (eds.) CSE 2011. CCIS, vol. 202, pp. 514–518. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22456-0_74ChapterGoogle Scholar
  22. Zhang, J., Huang, M., Zhang, Y.: A collaborative filtering recommendation algorithm for social interaction. In: the 14th Web Information Systems and Applications Conference (WISA), Liuzhou, China (2017). https://doi.org/10.1109/WISA.2017.26
  23. Wu, Y., Huang, M., Lu, Y.: Association rules and collaborative filtering on sparse data of a leading online retailer. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, Singapore (2017). https://doi.org/10.1109/IEEM.2017.8290000
  24. Mehmood Khan, B., Mansha, A., Hassan Khan, F., Bashir, S.: Collaborative filtering based online recommendation systems: a survey. In: 2017 International Conference on Information and Communication Technologies (ICICT), Karachi, Pakistan (2017). https://doi.org/10.1109/ICICT.2017.8320176
  25. Karthikeyan, A., Somasundaram, K., Mahendran, M., Yogadinesh, S.: Bridging social media to e-commerce: using collaborative filtering product recommendation. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India (2017). https://doi.org/10.1109/ICPCSI.2017.8391832
  26. Li, H., Diao, X., Cao, J., Zheng, Q.: Collaborative filtering recommendation based on all-weighted matrix factorization and fast optimization. IEEE Access 6, 25248–25260 (2018). https://doi.org/10.1109/ACCESS.2018.2828401ArticleGoogle Scholar
  27. Lee, J.-W., Nam, K.-H., Lee, S.-G.: Semantics based collaborative filtering. In: Lee, R., Ishii, N. (eds.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 201–208. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01203-7_17ChapterGoogle Scholar
  28. Zuo, X., Liu, X., Yang, B.: Coupled low rank approximation for collaborative filtering in social networks. IEEE Access 6, 13326–13335 (2018). https://doi.org/10.1109/ACCESS.2018.2806488ArticleGoogle Scholar
  29. Zou, L., Gu, Y., Song, J., Liu, W., Yao, W.: HDNN-CF: a hybrid deep neural networks collaborative filtering architecture for event recommendation. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovatio (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA,USA, pp 1–8 (2017). https://doi.org/10.1109/UIC-ATC.2017.8397524
  30. Mahadevan, A., Arock, M.: Credible user-review incorporated collaborative filtering for video recommendation system. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, pp 375–379 (2017). https://doi.org/10.1109/ISS1.2017.8389433
  31. Mao, Y., Zhang, F., Xu, L., Zhang, D., Yang, H.: A bidirectional collaborative filtering recommender system based on EM algorithm. In: Pan, J.-S., Wu, T.-Y., Zhao, Y., Jain, L.C. (eds.) VTCA 2017. SIST, vol. 86, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70730-3_32ChapterGoogle Scholar
  32. Sirikayon, C., Thusaranon, P., Pongtawevirat, P.: A collaborative filtering based library book recommendation system. In: 2018 5th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand (2018). https://doi.org/10.1109/ICBIR.2018.8391175
  33. Zhang, W.: Research on application of collaborative filtering in electronic commerce recommender systems. In: Lin, S., Huang, X. (eds.) CSEE 2011. CCIS, vol. 215, pp. 539–544. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23324-1_87ChapterGoogle Scholar
  34. Vaghela, V.B., Pathak, H.H.: Optimization of the neighbor parameter of k-nearest neighbor algorithm for collaborative filtering. In: Modi, N., Verma, P., Trivedi, B. (eds.) Proceedings of International Conference on Communication and Networks. AISC, vol. 508, pp. 87–93. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2750-5_9ChapterGoogle Scholar
  35. Liang, W., Lu, G., Ji, X., Li, J., Yuan, D.: Difference factor’ KNN collaborative filtering recommendation algorithm. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 175–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_14ChapterGoogle Scholar
  36. Kant, S., Mahara, T., Kumar Jain, V., Kumar Jain, D., Kumar Sangaiah, A.: LeaderRank based k-means clustering initialization method for collaborative filtering. Comput. Electr. Eng. 69, 598–609 (2017). https://doi.org/10.1016/j.compeleceng.2017.12.001ArticleGoogle Scholar
  37. Kant, S., Mahara, T.: Nearest biclusters collaborative filtering framework with fusion. J. Comput. Sci. 25, 204–212 (2018). https://doi.org/10.1016/j.jocs.2017.03.018ArticleGoogle Scholar
  38. Jiang, B., Song, T., Yang, C.: A heuristic similarity measure and clustering model to improve the collaborative filtering algorithm. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, pp 1658–1665 (2017). https://doi.org/10.1109/FSKD.2017.8393014
  39. Li, L., Guo, F., Qin, S.: A listwise collaborative filtering based on Plackett-Luce model. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, pp 2159–2163 (2017). https://doi.org/10.1109/CompComm.2017.8322919
  40. Raghuwanshi, S.K., Pateriya, R.K.: Collaborative filtering techniques in recommendation systems. In: Shukla, R.K., Agrawal, J., Sharma, S., Singh Tomer, G. (eds.) Data, Engineering and Applications, pp. 11–21. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6347-4_2ChapterGoogle Scholar

Author information

Authors and Affiliations

  1. Laboratory of Information Technology and Modeling, Faculty of Sciences Ben M’sik, Hassan II University, Casablanca, Morocco Kawtar Najmani, El Habib Benlahmar & Nawal Sael
  2. Laboratory of Software Project Management, Mohammed V University, ENSIAS, Rabat, Morocco Ahmed Zellou
  1. Kawtar Najmani